
AP Computer Science Object-Oriented Design,
Inheritance, Interfaces

The Java programming language is often described as being an object-oriented language because of its strong support
of classes, from which specific instances of a class can be constructed. These instances, or objects, or abstract
representations of "things" as described by the class, which can be thought of as a blueprint or template for creating
an object.

This unit develops some of the important object-oriented principles that you should take into consideration when
you have been given the task of designing an object or collection of objects.

 1. Implementing a Class
When first learning an object-oriented language, you may be given a class description, complete with instance
variables and methods for which you will write a Java-based implementation. We've been doing from the first
day of this course, and if somebody says to write a given class, with these specific instance variables and
these specific constructors and methods, you should be able to do so without much difficulty.

Example: Write a class called NewsArticle which will be used to keep track of newspaper articles for a
magazine or newspaper. It will have three instance variables—author, title, and text—along with
methods for interacting with each of those variables. There should be two constructors: one that takes just
the author as a parameter, and one that accepts both author and title (in that order) as parameters.

Writing a class like this doesn't require any object-oriented design. You are simply writing the code that will
implement a class that someone else has already designed for you.

NewsArticle

author
title
text

.getAuthor()

.getTitle()

.getText()

.setAuthor()

.setTitle()

.setText()

 2. Designing a Class
As you become more familiar with the way a class is designed—how its attributes (instance variables) and
methods (accessors, or "getters," and mutators, or "setters") allow for interacting with objects of that class,
you develop some idea of how to create or design a class to help solve a specific problem.

(a) Designing to maximize Cohesion
A well-designed class is one that is cohesive: it represents a single "thing," more or less, and doesn't try to
accommodate unrelated features that aren't directly related to that thing.

Example: A Person class might describe a person in terms of their name and age, which are more or
less directly related to helping to identify a person. We could also define a person in terms of the
clothing that they're wearing—top, pants or skirt, hat, shoes—but that's less connected to the idea of a
person. From a cohesion perspective, it would make more sense to keep Person as they are, and create
a new class Clothing, and we'd use that class with the Person class to manage what a person wears.
The Person class might have an array of Clothing items as one of its instance variables, for example
(see diagram below).

By making our classes more cohesive, writing our code is simplified as we focus on the aspects of a
single, specific object.

(b) Designing to minimize Coupling
Coupling has to do with dependencies between classes. If a class has a lot of connections to other
classes, then we say that there is a "high degree of coupling." A Student class is a member of a Course
class which is part of a Schedule, and the Student is part of a GradeLevel, but is also a member of a
School, where there are Teachers, and a Teacher teaches that Course,... In a complex problem,
there is necessarily more coupling, more interdependence of classes.

There is always going to be some coupling between classes—that's the whole point of writing cohesive
classes, so we can have them interact with each other—but you'll know you have too much coupling
when you find that some of your classes are connected to too many other classes.

Example: A Die class might manage a six-sided die object, and a Dice class might manage two of
those Die objects so that people can roll the dice in a Craps game. It's expected that the game class will
interact with the Dice class—rolling dice is part of the game. But there should be no need for the
Craps class to call the Die class directly. (See below.)

By reducing coupling where possible, we can keep the relationships between our classes simpler and
better organized. Where coupling has been reduced, we are more easily able to make changes to one
part of the system without affecting a large number of other parts of the system.

 3. Reusing Code with Inheritance (Subclasses that "extend" a Superclass)
It is often the case that a number of components of a large program may be considered as different
categories of the same thing.

Examples: The idea of Computer might include being a Laptop, a Desktop, or a Phone; a BankAccount
might actually be a SavingsAccount or a CheckingAccount, and Money might be considered as a Coin or
a Bill.

In each case, the larger, more general class is a superclass, while the smaller, more specific class, subclass
"extends" the superclass. Subclasses inherit the instance variables and methods of the superclass, but also
have the ability to add their own instance variables and methods, and even override methods described by
the superclass.

 4. Reusing Code with Interfaces (Classes that "implement" an Interface)
Another type of code reuse occurs when a class "implements" an interface. An interface is "abstract"—you
can't make an instance of it—and is usually given a name in the form of an adjective: Comparable,
Measurable, Edible, Drivable. The interface itself describes at least one method, for which only the
header is given; it's up a class that implements the interface to actually describe the code that will be used
when that interface method is used.

Example: The Comparable interface is described by the official Java API, and requires that any class
implementing the Comparable interface implement the compareTo() method. There are lots of different
ways to compare things: numbers are compared according to their values, String objects are compared
according to their alphabetical order, basketball players might be compared according to their height, ...

Why would you want to implement an interface? Couldn't you just write your own compareTo() method?
You certainly could, but it turns out that Java provides support for Comparable objects. There are libraries
of programs that work with Comparable objects—that allow you to sort them, for example—but they only
work with Comparable objects. If you want to take advantage of any library that works with a particular type of
interface, you'll want to be sure to implement that interface.

In addition to these large-scale themes in this unit, there are a number of other details and ideas with which you
should be familiar.

 1. Subclasses delivering constructor parameters to a superclass
Use the super(parameter); statement as the first line in the subclass constructor.

 2. Subclasses inherit instance variables and methods from the superclass
That's the reason we use subclasses: to take advantage of the methods that have already been written.

 3. Subclasses can override superclass methods
Although a superclass may have a method we can use, we're not stuck using that version of the method: we
can rewrite it to do something unique with our subclass. One common strategy is to override the toString()
method so that we can use it to reveal information about our specific subclass. Likewise, the equals()
method may be overridden so that two objects that inherit from the "cosmic superclass" Object can be
compared to each other.

 4. Converting between subclasses and superclasses
A superclass reference can be used when a subclass is expected... but a subclass reference can't be
substituted for a superclass reference.

Example: The Person superclass has a Student subclass. We can make an ArrayList<Person> and put
Student objects in there, but we can't make an ArrayList<Student> and put Person objects in there.

If you have an ArrayList<Person> and you know that one of the elements is a Student, you can always cast
that Person object into a Student object, and then interact with that reference.

 5. Abstract classes, with abstract methods, are used to indicate methods that must be implemented
This is similar in some ways to the idea of an interface, but with some important differences.
(a) Abstract classes have instance variables, constructors, instance variables, and concrete methods. These

all apply to all classes that extend the abstract class. They also have abstract methods that are not
defined in the abstract class, but must be defined by the extending class. You can't create an object from
an abstract class, only from classes that extend the abstract class, and thus inherit its qualities. We say
that the abstract class does have a state that is defined by its variables.

(b) An interface has no instance variables and no state. It only defines methods that must be defined by
classes that implement the interface.

(c) A class may inherit from only one superclass, but a class may implement multiple interfaces.

EXERCISES
1. Write a class ElectronicDevice that has a name and a boolean variable turnedOn. Include constructors,

accessor methods, and mutator methods that will allow a client program to interact with the class.

2. Some electronic devices have batteries that can be recharged. Write an interface Chargeable that includes
three methods: addEnergy(double percent), which will allow some amount of energy (as a percent of a
battery's maximum capacity) to be added, getEnergy(), which will reveal the battery's remaining energy (as
a percent of battery's maximum capacity), and useEnergy(double percent), which will reduce the
amount of energy stored in the battery by a percentage of its maximum capacity when the device is used.

3. Write a class MobilePhone that inherits from ElectronicDevice and implements Chargeable. What
additional instance variables and methods might be needed for this new class to work?

4. Write a class Flashlight that inherits from ElectronicDevice. This class should have a String instance
variable batterySize.

5. Write toString() methods for each class so that we can easily observe their state.

6. You'd like to write classes for three more types of devices: a LaptopComputer, a TICalculator, and a
DesktopComputer. How do these fit into the classes you've already written? Should they inherit from any
classes? Should classes inherit from them? Which of these new devices should implement the Chargeable
interface?

7. Write a main() program called DeviceManager that creates an ArrayList of ElectronicDevice objects
and demonstrates interactions with them.

EXERCISE SOLUTIONS

/**
 * The class ElectronicDevice here.
 */
public class ElectronicDevice
{
 private String name;
 private boolean turnedOn;

 public ElectronicDevice(String theName)
 {
 name = theName;
 turnedOn = false;
 }

 public String getName()
 {
 return name;
 }

 public void turnOn()
 {
 turnedOn = true;
 }

 public void turnOff()
 {
 turnedOn = false;
 }

 public boolean isTurnedOn()
 {
 return turnedOn == true;
 }

 public String toString()
 {
 return super.toString() + "[name=" + name +
 ",turnedOn=" + turnedOn + "]";
 }
}

/**
 * Write a description of interface Chargeable here.
 *
 * @author (your name)
 * @version (a version number or a date)
 */
public interface Chargeable
{
 void addEnergy(double percent);

 double getEnergy();

 void useEnergy(double percent);
}

/**
 * Describes the class MobilePhone.
 */
public class MobilePhone extends ElectronicDevice implements Chargeable
{
 private double batteryLevel;

 /**
 * Constructor for objects of class MobilePhone
 */
 public MobilePhone(String name)
 {
 super(name);
 batteryLevel = 100; // 100%
 }

 public void addEnergy(double percent)
 {
 batteryLevel += percent;
 }

 public double getEnergy()
 {
 return batteryLevel;
 }

 public void useEnergy(double percent)
 {
 batteryLevel -= percent;
 }

 public void makeCall(double minutes)
 {
 batteryLevel -= minutes * 0.5;
 }

 public void sendText()
 {
 batteryLevel -= 0.1;
 }

 public String toString()
 {
 return super.toString() + "[batteryLevel=" + batteryLevel + "]";
 }
}

/**
 * Describes the class Flashlight here.
 */
public class Flashlight extends ElectronicDevice
{
 private int name;
 private String batterySize;

 /**
 * Constructor for objects of class Flashlight
 */
 public Flashlight(String name, String batterySize)
 {
 super(name);
 this.batterySize = batterySize;
 }

 /**
 * An example of a method - replace this comment with your own
 */
 public String getBatterySize()
 {
 return batterySize;
 }
}

/**
 * Describes the class MobilePhone.
 */
public class Laptop extends ElectronicDevice implements Chargeable
{
 private double batteryLevel;

 /**
 * Constructor for objects of class MobilePhone
 */
 public Laptop(String name)
 {
 super(name);
 batteryLevel = 100; // 100%
 }

 public void addEnergy(double percent)
 {
 batteryLevel += percent;
 }

 public double getEnergy()
 {
 return batteryLevel;
 }

 public void useEnergy(double percent)
 {
 batteryLevel -= percent;
 }

 public void surfInternet(double minutes)
 {
 batteryLevel -= minutes * 0.5;
 }

 public void sendEmail()
 {
 batteryLevel -= 0.1;
 }
}

/**
 * The DeviceManager demonstrates the use of all the devices.
 */

import java.util.ArrayList;

public class DeviceManager
{
 public static void main(String[] args)
 {
 System.out.println("Initializing devices into ArrayList...\n");
 ArrayList<ElectronicDevice> devices = new ArrayList<ElectronicDevice>();
 devices.add(new Laptop("MacBookPro"));
 devices.add(new Flashlight("Maglite", "D"));
 devices.add(new MobilePhone("iPhone6"));
 devices.add(new ElectronicDevice("Nintendo Switch"));

 System.out.println("Interacting with machines...\n");
 Laptop myLaptop = (Laptop) devices.get(0);
 myLaptop.turnOn();
 myLaptop.surfInternet(2.5);
 myLaptop.sendEmail();

 Flashlight myMag = (Flashlight) devices.get(1);
 myMag.turnOn();

 MobilePhone myPhone = (MobilePhone) devices.get(2);
 myPhone.turnOn();
 myPhone.makeCall(60); // one-hour call
 for (int i = 0; i < 100; i++) // sending 100 texts
 myPhone.sendText();

 System.out.println("All devices:");
 for (ElectronicDevice device : devices)
 {
 System.out.println(device);
 }

 System.out.println("\nDevices that have been turned on:");
 for (ElectronicDevice device : devices)
 {
 if (device.isTurnedOn())
 System.out.println(device);
 }

 System.out.println("\nBattery state of Rechargeables:");
 for (ElectronicDevice device : devices)
 {
 if (device instanceof Chargeable) // only getEnergy for rechargeables
 {
 Chargeable chargeableDevice = (Chargeable) device; // cast
 System.out.println(device.getName() + ", " +
 chargeableDevice.getEnergy());
 }
 }
 }
}

OUTPUT:

Initializing devices into ArrayList...

Interacting with machines...

All devices:
Laptop@788ec784[name=MacBookPro,turnedOn=true]
Flashlight@42273aff[name=Maglite,turnedOn=true]
MobilePhone@6cc5499[name=iPhone6,turnedOn=true][batteryLevel=60.000000000000284]
ElectronicDevice@5a888156[name=Nintendo Switch,turnedOn=false]

Devices that have been turned on:
Laptop@788ec784[name=MacBookPro,turnedOn=true]
Flashlight@42273aff[name=Maglite,turnedOn=true]
MobilePhone@6cc5499[name=iPhone6,turnedOn=true][batteryLevel=60.000000000000284]

Battery state of Rechargeables:
MacBookPro, 98.65
iPhone6, 60.000000000000284

